Improving the Analysis of Context-Aware Information via Marker-Based Stigmergy and Differential Evolution
نویسندگان
چکیده
We use the marker-based stigmergy, a mechanism that mediates animal-animal interactions, to perform context-aware information aggregation. In contrast with conventional knowledge-based models of aggregation, our model is data-driven and based on self-organization of information. This means that a functional structure called track appears and stays spontaneous at runtime when local dynamism in data occurs. The track is then processed by using similarity between current and reference tracks. Subsequently, the similarity value is handled by domaindependent analytics, to discover meaningful events. Given the changeability of human-centered scenarios, the overall process is also adaptive, thanks to parametric optimization performed via differential evolution. The paper illustrates the proposed approach and discusses its characteristics through two real-world case studies.
منابع مشابه
The CORTEX Programming Model
A sentient object is a mobile, intelligent software component that is able to sense its environment via sensors and react to sensed information via actuators. Sentient objects are context-aware, aware of both their internal state and the state of their surrounding local environment, and are cooperative, cooperating with other sentient objects both through traditional communication channels and ...
متن کاملA semantic-aware role-based access control model for pervasive computing environments
Access control in open and dynamic Pervasive Computing Environments (PCEs) is a very complex mechanism and encompasses various new requirements. In fact, in such environments, context information should be used in access control decision process; however, it is not applicable to gather all context information completely and accurately all the time. Thus, a suitable access control model for PCEs...
متن کاملA performance comparison of ant stigmergy and differential evolution for numerical optimization
The Multilevel Ant Stigmergy Algorithm (MASA) is a new approach to solving multi-parameter problems based on stigmergy, a type of collective work that can be observed in nature. In this paper we evaluate the performance of MASA regarding its applicability as numerical optimization techniques. The evaluation is performed with several widely used benchmarks functions, as well as on an industrial ...
متن کاملContext-Aware Recommender Systems: A Review of the Structure Research
Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کامل